martes, 1 de septiembre de 2009

APLICACIONES DE LAS MICROONDAS

Sin duda podemos decir que el campo mas valioso de aplicación de las m. es el ya mencionado de las comunicaciones, desde las que pudiéramos denominar privadas, pasando por las continentales e incontinentales, hasta llegar a las extraterrestres.

En este terreno, las m. actúan generalmente como portadoras de información, mediante una modulación o codificación apropiada. En los sistemas de radar, cabe citar desde los empleados en armamento y navegación, hasta los utilizados en sistemas de alarma; estos últimos sistemas suelen también basarse en efecto DOPPLER o en cambios que sufre la razón de onda estacionaria (SWR) de una antena, pudiendo incluso reconocerse la naturaleza del elemento de alarma. Sistema automático de puertas, medida de velocidad de vehículos, etc.

Otro gran campo de aplicación es el que se pudiera denominar científico. En radioastronomía ocurre que las radiaciones extraterrestres con frecuencia comprendidas entre 10 Mhz y 10Ghz pueden atravesar el filtro impuesto por la atmósfera y llegar hasta nosotros.

Entre estas radiaciones están algunas de tipo espectral, como la línea de 1420 OH, y otras de tipo continuo debidas a radiación térmica, emisión giromagnética, sincrotónica, etc. La detección de estas radiaciones permite obtener información de la dinámica y constitución del universo. En el estudio de los materiales (eléctricos, magnéticos, palmas) las m. se pueden utilizar bien para la determinación de parámetros macroscópicos, como son la permitividad eléctrica y la permeabilidad magnética, bien para el estudio directo de la estructura molecular de la materia mediante técnicas espectroscópicas y de resonancia.

En el campo médico y biológicose utilizan las m. Para la observación de cambios fisiológicos significativos de parámetros del sistema circulatorio y respiratorio.

Es imposible hacer una enumeración exhaustiva de aplicaciones que, aparte de las ya citadas, pueden ir desde la mera confección de juguetes hasta el controlar de procesos o funcionamiento de computadores ultra rápidos. Quizá el progreso futuro de las microondas. Esta en el desarrollo cada día mayor, de los dispositivos a estado sólido, en los cuáles se consigue una disminución de precio y tamaño que puede llegar a niveles insospechados; estos sistemas son la combinación de los generadores a semiconductores con las técnicas de circuiteria integrada, fácilmente adaptables a la producción en masa.

Sin embargo no todo son beneficios; un crecimiento incontrolado de la utilización de las m, puede dar lugar a problemas no solo de congestión del espectro, interferencias, etc., sino también de salud humana; este último aspecto no está lo suficientemente estudiado, como se deduce del hecho de que los índices de peligrosidad sean marcadamente diferentes de unos países a otros.

3. PROPAGACION DE MICROONDAS

Las microondas ocupan una porción del espectro de frecuencias entre 1 y 300 Ghz que corresponde a 10 cm y mm respectivamente, en longitudes de onda. En la práctica son ondas del orden de 1 Ghz a 12 Ghz.

La banda espectral de las microondas de divide en sub-bandas tal como se muestra

en la tabla.

FRECUENCIA (GHz)
LONGITUD DE ONDA APROXIMADA (Cm)

S
1.5 A 8
10

X
8 A 12.5
3

K
12.5 A 40
1.1

Q
40 A 50
0.8


Sub-bandas en las que se divide la banda espectral de las microondas.

Los sistemas de microondas son usados en enlaces de televisión, en multienlaces telefónicos y general en redes con alta capacidad de canales de información.

Las microondas atraviesan fácilmente la ionosfera y son usadas también en comunicaciones por satélites.

La longitud de onda muy pequeña permite antenas de alta ganancias.

Como el radio de fresnel es relativamente pequeño, la propagación se efectúa como en el espacio libre.

Si hay obstáculos que obstruyan el radio de fresnel, la atenuación es proporcional al obstáculo.

De la ecuación se obtiene la atenuación Pr/Pt en enlaces espaciales

Pr/Pt (dB) = Gt (dB) + Gr (dB) +20 log h (m) - 22 - 20 log r (Km)

donde r es la distancia del enlace, h es la longitud de onda Gt Y Gr son las ganancias del transmisor y del receptor receptivamente.

A la atenuación en espacio libre se le agregan algunos valores de atenuación debido a obstáculos:

6 dB: Incidencia restante.

40 dB: Bloqueo total del haz.

La atenuación puede variar de 6 a 20 dB dependiendo del tipo de superficie que provoca la difracción. Así:

6 dB: Para una difracción en filo de cuchilla, con incidencia resante.

20 dB: Difracción con incidencia resante en obstáculo mas redondeado como terreno ligeramente ondulado o agua que sigue la curvatura de la tierra.

En condiciones desfavorables las perdidas por reflexión pueden ser de hasta 50 db (propagación sobre mar).

Si la superficie es rugosa se consideran despreciables las perdidas por reflexión.

La temperatura efectiva de ruido Te del circuito receptor, referida a los terminales de entrada y la cifra de ruido o (factor de ruido) F de un circuito están relacionados de la siguiente forma:

F = 1 + Te/To

F es la razón de la potencia de ruido real de salida (al conectar en un generador de temperatura normalizado de To=290^oK) y la potencia de ruido de salida que existiría para la misma entrada, si el circuito no tuviera ruidos propios.

Por tanto, se nota que

F = 1 o 0 dB corresponde a Te = 0^K

F = 2 o 3 dB corresponde a Te = 290^oK, etc.

No hay comentarios:

Publicar un comentario